Effects of Strain Hardening and Fine Structure on Strength and Toughness of Tempered Martensite in Carbon Steels
نویسندگان
چکیده
A series of medium-carbon low alloy steels was quenched to martensite and tempered at 150 C. This low-temperature-tempered (LTT) martensite was subjected to uniaxial tensile and impact testing. Yield and ultimate tensile strength and uniform elongation increased, and post uniform and total elongation and fracture toughness decreased, with increasing carbon concentration. The carbon dependence of the mechanical properties is attributed to the dislocation/transition carbide substructure of the L l T martensite. As carbon content increases, the density of the transition carbide arrays increases, and the rate of strain hardening increases, resulting in the noted property changes. The strain hardening mechanisms and questions remaining about the evolution and characterization of the transition carbide structures are discussed.
منابع مشابه
Ultra-Fine Grained Dual-Phase Steels
This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...
متن کاملProcessing of Fine-Grained DP300/600 Dual Phase Steel from St12 Structural Steel by the Thermo-Mechanical Processing of Cold Rolling and Intercritical Annealing
The effect of microstructural refinement and intercritical annealing on the mechanical properties and work-hardening response of a low carbon St12 steel was studied. It was revealed that intercritical annealing of the ferritic-pearlitic sheet results in the formation of a coarse-grained DP microstructure with discrete martensite islands normally formed in place of pearlitic colonies, which resu...
متن کاملGrain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite
A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...
متن کاملInfluence of Tempering on the Microstructure & Properties of Martensite and Bainite developed in a Low-C High-Si Steel
Martensitic and bainitic steels are two types of widely used steels with excellent mechanical behaviors in automatic industry. It’s universally acknowledged that asquenched martensite possesses poor ductility and impact toughness, which should be tempered before putting into application. During tempering, as-quenched martensite changes from a hard and brittle microstructure to more ductile and ...
متن کاملOptimization of thermomechanical parameters to produce an ultra-high strength compressor disk
Structural steels with very high strength levels are often referred to as ultrahigh-strength steels (UHSS). The usage of UHSS has been extensively studied in aerospace industries and offshore platforms. In this study, medium carbon low alloy steel (AMS6305) was thermomechanicaly treated to obtain an ultra-high strength bainitic steel for aircraft engine compressor disk. A novel themomechanical ...
متن کامل